
 18613 - Computer
 Systems

 Programs and Data

 architecture and complilers

 data

 data representing

 data in different base traslate number in base-n to base-10
 e.g.

 000 (base-n) = 0*n^2 + 0*n^1 + 0*n^0 = 0 (base-10)

 range bound overflow go over the range again

 sign representation

 add a sign bit

 negative design logic

 require the -n + n = 0, where n is any natural
 number

 so could not add a sign 1 to the front of n to
 make it a -n, because n + (-n) = max of range

 so in machine, -n = ~n + 1 where ~n is the complement of n

 byte ordering

 Big Endian
 Least significant byte has highest address

 used in Sun (Oracle SPARC), PPC Mac, Internet

 Little Endian
 Least significant byte has lowest address

 used in x86, ARM

 e.g.

 integer

 representation

 if given a w bits binary number x_0, x_2, ... , x_w-1

 unsigned

 range [0, 2^w -1]

 signed, aka two's complement

 range [-2^{w-1}, 2^{w-1} -1]

 conversion & casting

 bit pattern is kept, but reinterpreted

 signed and unsigned in single expression,
 signed values implicitly cast to unsigned

 expanding & truncating

 expanding

 unsigned pad 0

 signed pad 1

 always yield expected result

 truncating

 bit pattern is kept, but reinterpreted

 like doing mod

 result sometimes unexpected

 calculation

 adding if overflow, discard carry bits

 minusing mind the range too

 multiplication

 division
 efficient multi / division

 using shift

 << for multiply

 >> for divide

 unsigned
 logic shift

 signed

 arithmetic shift

 rounding toward left

 rounding toward 0 add 0.5 in base 10
 lead to modify according to
 the remainder part

 float

 scientific notation

 numerical form

 Sign bit s
 determines whether number is negative or
 positive

 Significand M

 normally a fractional value in range [1.0,2.0).

 it means, normally holding a implicit
 leading 1 + 0.M

 Exponent E

 weights value by power of two

 having a 'sign' bit

 E need to minus a bias

 not a signed number actually
 because when this bit equals 1, the exponent
 of the float in scientific notation is positive

 the bias is for distinguishing whether the
 exponent of the float in scientific notation is
 positive or negative

 IEEE 754

 floating point standard

 single precision 32bits
 1 bit s + 8 bits exp + 23 bits frac

 can represent 7 decimal digits, 10^{±38}

 double precision 64bits
 1 bit s + 11 bits exp + 52 bits frac

 can represent 16 decimal digits, 10^{±308}

 types regrading to E

 denormalized

 exp = 00...00

 M = 0.frac

 E = 1-bias

 when exp = 00..00, frac = 00..00 represent 0

 when exp = 00..00, frac != 00..00 represent number closest to 0

 normalized

 exp != 0 && exp != 11...11

 M = 1.frac

 E = exp - bias

 construction examples

 special

 exp = 11...11

 when exp = 11..11, frac = 00..00 represent infinity

 when exp = 11..11, frac != 00..00 Not a Number (NaN)

 rounding

 calculation

 addition fixing

 If M ≥ 2, shift M right, increment E

 if M < 1, shift M left k positions, decrement E
 by k

 Overflow if E out of range

 Round M to fit frac precision

 e.g.

 properties

 multiplication

 fixing

 If M ≥ 2, shift M right, increment E

 If E out of range, overflow

 Round M to fit frac precision

 e.g.

 properties

 conversion & casting

 bit pattern changes (casting between int,
 float, double)

 double/float → int

 ▪ Truncates fractional part

 ▪ Like rounding toward zero

 ▪ Not defined when out of range or NaN:
 Generally sets to TMin

 int → double
 ▪ Exact conversion, as long as int has ≤ 53
 bit word size

 int → float ▪ Will round according to rounding mode

 bit-level manipulation

 & and all 1 then 1, 0 otherwise

 | or all 0 then 0, 1 otherwise

 ̂ xor diff then 1, same then 0

 ~ not all flipped

 << left shift pad 0

 >> right shift

 arithmetic shift

 padding depends on the sigh bit

 pad 1 if negative

 pad 0 if positive

 logic shift pad 0

 difference with &&, ||, !
 values are treated as true or false;
 0 as false, 1 otherwise;
 return 0 or 1;

 shift < 0 or >= word size undefined

 structure alignment

 size of diff types

 Char: 1 byte

 Short: 2 byte

 Int, Float: 4 bytes

 Long, Double, Pointer: 8 bytes

 convention

 Each structure has alignment requirement K K = Largest alignment of any element

 Initial address & structure length must be
 multiples of K

 e.g.

 code optimization

 program

 compiling C

 .c -> .asm -> .object -> binary (executable)

 assembly program

 basic definition

 operation src, dst
 x86-64

 covered in 18613

 memory address
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

 register

 %rdi, %rsi, %rdx, %rcx, %r8, %r9
 1st, 2nd, 3rd, 4th, 5th, 6th argument

 if more, storing in stack

 %rax return value

 %rsp stack pointer

 %rbx, %rbp callee saved

 %rip current code control point

 size e.g.

 %rax holds 8B, %eax holds 4B, %ax
 holds 2B

 instruction suffixes

 b byte

 w word (2 bytes)

 l long (4 bytes)

 q quad (8 bytes)

 condition code

 CF Carry Flag
 for unsigned

 when carry or borrow

 ZF Zero Flag when 00..00

 SF Sign Flag
 for signed

 depending on the sign bit

 OF Overflow Flag

 for signed

 when positive overflow & negative overflow

 positive

 negative

 operation

 common

 movq Src,Dest Dest = Src

 leaq Src,Dest Dest = address computed by expression Src

 addq Src,Dest Dest = Dest + Src

 subq Src,Dest Dest = Dest − Src

 imulq Src,Dest Dest = Dest * Src

 salq Src,Dest Dest = Dest << Src Also called shlq

 sarq Src,Dest Dest = Dest >> Src Arithmetic arithmetic >>

 shrq Src,Dest Dest = Dest >> Src Logical

 xorq Src,Dest Dest = Dest ^ Src

 andq Src,Dest Dest = Dest & Src

 orq Src,Dest Dest = Dest | Src

 testq Src, Dest computing a & b without setting the destination

 logic >>

 condition operation

 set[?] A, B

 calculate B - A

 set low-order byte of Dest to 0 or 1 do not alter other 7 bytes

 setl

 j[?] Address

 jumping to different part of code according
 to condition codes

 like goto

 control

 loops

 do-while

 e.g.

 while

 switch

 e.g.

 jump table mapping

 procedure

 mechanism

 passing control
 ▪ To beginning of procedure code

 ▪ Back to return point

 passing data
 ▪ Procedure arguments

 ▪ Return value

 memory management
 ▪ Allocate during procedure execution

 ▪ Deallocate upon return

 stack structure

 basic

 structure memory goes up, stack goes down

 operation

 push

 decreament %rsp by 8B

 write something into this place

 when calling a function, need to push

 pop

 increament %rsp by 8B

 no change in memory

 end of a function, need to pop

 resgister saving

 ▪ “Caller Saved”
 ▪ Caller must save values in its stack frame
 before call

 ▪ “Callee Saved”

 ▪ Callee saves values in its frame before
 using

 ▪ Callee restores values before returning

 stack frames

 rbp is frame pointer, usually for accessing
 local variables and function parameters (?)

 e.g.

 calling a function

 store return address in 0x118

 using rsp remembering the return position

 continue traverse the code of function

 return of function

 Memory

 architecture and OS

 layout

 components

 stack
 ▪ Runtime stack (8MB limit)

 ▪ E. g., local variables

 heap
 ▪ Dynamically allocated as needed

 ▪ When call malloc(), calloc(), new()

 data

 ▪ Statically allocated data

 ▪ E.g., global vars, static vars, string
 constants

 text/shared libraries
 ▪ Executable machine instructions

 ▪ Read-only

 e.g.

 buffer overflow

 write overflow, "changing the direction of
 the stack pointer"

 lessons

 code level

 use library routines that limit string lengths

 ▪ fgets instead of gets

 ▪ strncpy instead of strcpy

 ▪ Don’t use scanf with %s conversion
 specification

 ▪ Use fgets to read the string

 ▪ Or use %ns where n is a suitable integer

 system level
 randomized stack offsets

 nonexecutable code segments stack marked as non-executable hard for adversary to insert binary code

 using "stack canary" to protect buffer
 before return position, to check if there is
 anything wrong (like overflow modification)

 Virtual Memory

 Exceptional Control Flow compilers, OS, and architecture

 Networking, and Concurrency networking, OS, and architecture

 related area

 optimization point

 properties

 locality

 principle
 Programs tend to use data and instructions
 with addresses near or equal to those they
 have used recently

 types

 Temporal locality
 Recently referenced items are likely to be
 referenced again in the near future

 Spatial locality
 Items with nearby addresses tend to be
 referenced close together in time

 caching

 hit

 miss

 compulsory miss

 capacity miss

 conflict miss

