
 Programs and Data

 architecture and complilers

 data

 program

 data representing

 bit-level manipulation

 structure alignment

 data in different base

 range bound

 sign representation

 byte ordering

 integer

 float

 traslate number in base-n to base-10
 e.g.

 000 (base-n) = 0*n^2 + 0*n^1 + 0*n^0 = 0 (base-10)

 overflow go over the range again

 add a sign bit

 negative design logic

 require the -n + n = 0, where n is any natural
 number

 so could not add a sign 1 to the front of n to
 make it a -n, because n + (-n) = max of range

 so in machine, -n = ~n + 1 where ~n is the complement of n

 Big Endian

 Little Endian

 e.g.

 Least significant byte has highest address

 used in Sun (Oracle SPARC), PPC Mac, Internet

 Least significant byte has lowest address

 used in x86, ARM

 representation

 conversion & casting

 expanding & truncating

 calculation

 if given a w bits binary number x_0, x_2, ... , x_w-1

 unsigned

 signed, aka two's complement

 range [0, 2^w -1]

 range [-2^{w-1}, 2^{w-1} -1]

 bit pattern is kept, but reinterpreted

 signed and unsigned in single expression,
 signed values implicitly cast to unsigned

 expanding

 truncating

 unsigned

 signed

 always yield expected result

 pad 0

 pad 1

 bit pattern is kept, but reinterpreted

 like doing mod

 result sometimes unexpected

 adding

 minusing

 multiplication

 division
 efficient multi / division

 if overflow, discard carry bits

 mind the range too
 using shift

 << for multiply

 >> for divide

 unsigned

 signed

 logic shift

 arithmetic shift

 rounding toward left

 rounding toward 0 add 0.5 in base 10
 lead to modify according to
 the remainder part

 scientific notation

 numerical form

 IEEE 754

 rounding

 calculation

 conversion & casting

 Sign bit s

 Significand M

 Exponent E

 determines whether number is negative or
 positive

 normally a fractional value in range [1.0,2.0).

 it means, normally holding a implicit
 leading 1 + 0.M

 weights value by power of two

 having a 'sign' bit

 E need to minus a bias

 not a signed number actually

 the bias is for distinguishing whether the
 exponent of the float in scientific notation is
 positive or negative

 because when this bit equals 1, the exponent
 of the float in scientific notation is positive

 floating point standard

 single precision 32bits

 double precision 64bits

 types regrading to E

 1 bit s + 8 bits exp + 23 bits frac

 can represent 7 decimal digits, 10^{±38}

 1 bit s + 11 bits exp + 52 bits frac

 can represent 16 decimal digits, 10^{±308}

 denormalized

 normalized

 special

 exp = 00...00

 when exp = 00..00, frac = 00..00

 when exp = 00..00, frac != 00..00

 M = 0.frac

 E = 1-bias

 represent 0

 represent number closest to 0

 exp != 0 && exp != 11...11

 construction examples

 M = 1.frac

 E = exp - bias

 exp = 11...11

 when exp = 11..11, frac = 00..00

 when exp = 11..11, frac != 00..00

 represent infinity

 Not a Number (NaN)

 addition

 multiplication

 fixing

 e.g.

 properties

 If M ≥ 2, shift M right, increment E

 if M < 1, shift M left k positions, decrement E
 by k

 Overflow if E out of range

 Round M to fit frac precision

 fixing

 e.g.

 properties

 If M ≥ 2, shift M right, increment E

 If E out of range, overflow

 Round M to fit frac precision

 bit pattern changes (casting between int,
 float, double)

 double/float → int

 int → double

 int → float

 ▪ Truncates fractional part

 ▪ Like rounding toward zero

 ▪ Not defined when out of range or NaN:
 Generally sets to TMin

 ▪ Exact conversion, as long as int has ≤ 53
 bit word size

 ▪ Will round according to rounding mode

 & and

 | or

 ̂ xor

 ~ not

 << left shift

 >> right shift

 difference with &&, ||, !

 shift < 0 or >= word size undefined

 all 1 then 1, 0 otherwise

 all 0 then 0, 1 otherwise

 diff then 1, same then 0

 all flipped

 pad 0

 arithmetic shift

 logic shift

 padding depends on the sigh bit

 pad 1 if negative

 pad 0 if positive

 pad 0

 values are treated as true or false;
 0 as false, 1 otherwise;
 return 0 or 1;

 size of diff types

 convention

 code optimization

 Char: 1 byte

 Short: 2 byte

 Int, Float: 4 bytes

 Long, Double, Pointer: 8 bytes

 Each structure has alignment requirement K

 Initial address & structure length must be
 multiples of K

 e.g.

 K = Largest alignment of any element

 compiling C

 assembly program

 procedure

 scientific debugging

 code design

 .c -> .asm -> .object -> binary (executable)

 basic definition

 operation

 control

 operation src, dst

 memory address

 register

 instruction suffixes

 condition code

 x86-64

 covered in 18613

 D(Rb,Ri)

 (Rb,Ri,S)

 Mem[Reg[Rb]+Reg[Ri]+D]

 Mem[Reg[Rb]+S*Reg[Ri]]

 %rdi, %rsi, %rdx, %rcx, %r8, %r9

 %rax

 %rsp

 %rbx, %rbp

 %rip

 size e.g.

 %rax holds 8B, %eax holds 4B, %ax
 holds 2B

 1st, 2nd, 3rd, 4th, 5th, 6th argument

 if more, storing in stack

 return value

 stack pointer

 callee saved

 current code control point

 b byte

 w word (2 bytes)

 l long (4 bytes)

 q quad (8 bytes)

 CF Carry Flag

 ZF Zero Flag

 SF Sign Flag

 OF Overflow Flag

 for unsigned

 when carry or borrow

 when 00..00

 for signed

 depending on the sign bit

 for signed

 when positive overflow & negative overflow

 positive

 negative

 common

 condition operation

 movq Src,Dest

 leaq Src,Dest

 addq Src,Dest

 subq Src,Dest

 imulq Src,Dest

 salq Src,Dest

 sarq Src,Dest

 shrq Src,Dest

 xorq Src,Dest

 andq Src,Dest

 orq Src,Dest

 testq Src, Dest

 logic >>

 Dest = Src

 Dest = address computed by expression Src

 Dest = Dest + Src

 Dest = Dest − Src

 Dest = Dest * Src

 Dest = Dest << Src Also called shlq

 Dest = Dest >> Src Arithmetic arithmetic >>

 Dest = Dest >> Src Logical

 Dest = Dest ^ Src

 Dest = Dest & Src

 Dest = Dest | Src

 computing a & b without setting the destination

 set[?] A, B

 j[?] Address

 calculate B - A

 set low-order byte of Dest to 0 or 1

 setl

 do not alter other 7 bytes

 jumping to different part of code according
 to condition codes

 like goto

 loops

 switch

 do-while

 while

 e.g.

 e.g.

 jump table mapping

 mechanism

 stack structure

 passing control

 passing data

 memory management

 ▪ To beginning of procedure code

 ▪ Back to return point

 ▪ Procedure arguments

 ▪ Return value

 ▪ Allocate during procedure execution

 ▪ Deallocate upon return

 basic

 stack frames

 e.g.

 structure

 operation

 resgister saving

 memory goes up, stack goes down

 push

 pop

 decreament %rsp by 8B

 write something into this place

 when calling a function, need to push

 increament %rsp by 8B

 no change in memory

 end of a function, need to pop

 ▪ “Caller Saved”

 ▪ “Callee Saved”

 ▪ Caller must save values in its stack frame
 before call

 ▪ Callee saves values in its frame before
 using

 ▪ Callee restores values before returning

 rbp is frame pointer, usually for accessing
 local variables and function parameters (?)

 calling a function

 store return address in 0x118

 using rsp remembering the return position

 continue traverse the code of function

 return of function

 process

 approach

 principal

 common error

 recommendation

 conclusion -> diagnosis -> fix -> confirm

 brute force

 given a file badfib.c

 1. debugger (e.g. gcc)

 2. valgrind

 1.1 gcc -Wall -Werror

 1.2 try different optimization level

 all warnings being treated as errors

 e.g. gcc -Wall -Werror -O3 -o badfib badfib.c

 * try at least -O3, -O0

 e.g.

 gcc -O3 -o badfib badfib.c

 gcc -O2 -o badfib badfib.c

 gcc -O1 -o badfib badfib.c

 gcc -O0 -o badfib badfib.c

 a memory error detector

 e.g. valgrind badfib

 quick and dirty

 ▪ 0 minutes – -Wall, valgrind

 ▪ 1 – 10 minutes – Informal Debugging

 ▪ 10 – 60 minutes – Scientific Debugging

 ▪ > 60 minutes – Take a break / Ask for help

 Use of uninitialized variables

 Unused values

 Unreachable code

 Duplicated code

 Bloated functions/methods

 Memory leaks

 Interface misuse

 Null pointers

 http://www.whyprogramsfail.com/slides.php

 principal

 recommendation

 good for testing

 naming

 comment

 commit

 code review

 design patterns

 precise, direct, short

 improve readability instead of comment

 clear, use branches

 “The Art of Readable Code”. Boswell and
 Foucher. 2011

