
 Storage Tech

 Memory

 Disk

 Nonvolatile Memories

 accessing speed of different devices

 architecture and OS

 layout

 read/write memory

 buffer overflow

 properties

 memory moutain

 Virtual Memory

 components

 e.g.

 RAM - building block

 memory hierarchy

 stack

 heap

 data

 text/shared libraries

 ▪ Runtime stack (8MB limit)

 ▪ E. g., local variables

 ▪ Dynamically allocated as needed

 ▪ When call malloc(), calloc(), new()

 ▪ Statically allocated data

 ▪ E.g., global vars, static vars, string
 constants

 ▪ Executable machine instructions

 ▪ Read-only

 volatile memories

 SRAM

 DRAM

 lose information if powered off

 6 transistors / bit

 Holds state indefinitely (but will still lose
 data on power loss)

 faster, more expensive

 used as cache memories

 1 Transistor + 1 capacitor / bit

 Must refresh state periodically

 used as main memories, frame buffers

 conventional organization d * w DRAM d = row * col - have d supercells

 w - w bits per supercell

 having an extra row buffer

 idea

 e.g.

 Top - smaller space, speed faster, cost more,
 storing data that is more frequently
 accessed;

 Bottom - larger space, speed slower, cost less;

 Intel Core i7 Cache Hierarchy

 read

 write

 CPU place address on Bus

 Memory reads address from Bus, retrieve
 data from that address, put the data on Bus

 CPU read data from Bus, put it in
 corresponding register

 CPU place address on Bus

 Memory reads address from Bus, waiting for
 the data needed to be written

 CPU place data on Bus

 Memory reads data from Bus and store it at
 corresponding address

 write overflow, "changing the direction of
 the stack pointer"

 lessons

 code level

 system level

 using "stack canary" to protect buffer

 use library routines that limit string lengths

 ▪ fgets instead of gets

 ▪ strncpy instead of strcpy

 ▪ Don’t use scanf with %s conversion
 specification

 ▪ Use fgets to read the string

 ▪ Or use %ns where n is a suitable integer

 randomized stack offsets

 nonexecutable code segments stack marked as non-executable hard for adversary to insert binary code

 before return position, to check if there is
 anything wrong (like overflow modification)

 locality

 caching

 performance metrics

 principle

 types

 importance

 Programs tend to use data and instructions
 with addresses near or equal to those they
 have used recently

 Temporal locality

 Spatial locality

 Recently referenced items are likely to be
 referenced again in the near future

 same address

 Items with nearby addresses tend to be
 referenced close together in time

 nearby address

 cache organization (S, E, B)

 cache accessing address

 accessing process

 accessing state

 extension introduce a "dirty" bit in block to increase efficiency

 only write back when the the cache line is
 going to be replaced

 first find "set" in cache, then find "target"

 hit

 miss

 block find in cache with corresponding set
 and same target

 the 'target' means the block position in main
 memory

 compulsory (cold) miss

 capacity miss

 conflict miss

 occur because cache starts empty

 first reference to the block

 when the set of active cache blocks is larger
 than the cache

 ?

 the n-th reference to the block (n>1), and the
 block is not in the cache

 Miss Rate

 Hit Time

 Miss Penalty

 Fraction of memory accesses not found in
 cache (misses / accesses) = 1 – hit rate

 Typical numbers (as %)

 3-10% for L1

 can be quite small (e.g., < 1%) for L2,
 depending on size, etc.

 Time to deliver a cached block to the
 processor

 Typical numbers

 includes time to determine
 whether line is in cache

 4 clock cycle for L1

 10 clock cycles for L2

 Additional time required because of a miss

 typically 50-200 cycles for main memory (
 Trend: increasing)

 origin

 definition

 lesson

 Rearranging loops to improve spatial locality

 Using blocking to improve temporal locality

 e.g. matrix multiplication

 performance virtualization

 e.g. matrix multiplication

 normal

 blocking

 further optimization

 n*n double array

 array blocking size = L * L

 cache block size = 8 double

 cache could afford storing more than 2
 array block

 so when iterating each pair of array block, it
 need at most 2 * L^2 / cache block size
 misses to store all the elements in this pair
 of array block in the cache

 and we need n/L iteration

 so the overall misses is (n/L) * (2 * L^2 / 8) =
 nL/4, which is far more smaller than the cost
 of normal case

 avoid disposal eviction

 Prerequisites

 for example, when we are handling c[x][x] =
 a[1][x] * b[x][1],

 first considering c[0][0] = a[1][0] * b[0][1],
 we put b[0] into set 0, a[1] into set 1,

 then considering c[1][1] = a[1][1] * b[1][1],
 we first access a[1], then we evict a[1] and
 put b[1] into set 1,

 attention that in the following operations,
 the a[1] is required again, so we need to
 evict b[1] and put back a[1], here comes the
 extra cost,

 so what we can do is to delay the
 assignment of the diagnal situation, by how
 we could cut the cost

 elements in same position in different
 arrays will be stored in the same set in cache

 magnetic medium

 component

 service time

 read disk

 platters, each with 2 surfaces

 each surface consists of concentric rings - tracks

 each track consists of sectors separated by gaps

 disk access time

 e.g.

 seek time (T avg seek)

 rotational latency (T avg rotation)

 transfer time (T avg transfer)

 Time to position heads over cylinder
 containing target sector.

 a "fixed" number

 Time waiting for first bit of target sector to
 pass under r/w head.

 per min

 Time to read the bits in the target sector.

 1

 2

 3

 CPU initiates a disk read by writing a command, logical block number, and destination memory
 address to a port (address) associated with disk controller.

 Disk controller reads the sector and performs a direct memory access (DMA) transfer into main memory.

 When the DMA transfer completes, the disk controller notifies the CPU with an interrupt (i.e.,
 asserts a special “interrupt” pin on the CPU).

 retain information when powered off

 types

 uses

 Read-only memory (ROM)

 Electrically eraseable PROM (EEPROM)

 Flash memory

 3D XPoint (Intel Optane) & emerging NVMs

 programmed during production

 electronic erase capability

 : EEPROMs, with partial (block-level) erase capability

 Wears out after about 100,000 erasings

 New materials

 ▪ Firmware programs stored in a ROM (BIOS,
 controllers for disks, network cards, graphics
 accelerators, security subsystems,…)

 ▪ Solid state disks (replacing rotating disks)

 ▪ Disk caches

 advantage

 disadvantage

 application

 No moving parts → faster, less power, more rugged

 Have the potential to wear out

 In 2022, about 2 times more expensive per byte

 Smartphones, laptops

 Increasingly common in desktops and servers

