Storage Tech

Memory

architecture and OS

components

e.g.

layout

x86-64 Linux Memory Layout

not drawn to scale

0000

(=2711)

Shared
Libraries

m Stack
= Runtime stack (8MB limit)
* E.g., local variables

u Heap
= Dynamically allocated as needed

0000

= When call malloc(), calloc (), new ()

= Data
= Statically allocated data

* Eg. global vars, static vars, string constants

m Text /Shared Libraries
* Executable machine instructions
= Read-only

Hex Address

Stack

Heap

Fext

400000
000000

= Runtime stack (8MB limit)

stack

= E. g, local variables

= Dynamically allocated as needed

heap

= When call malloc(), calloc(), new()

= Statically allocated data

data

= E.g., global vars, static vars, string
constants

= Executable machine instructions

text/shared libraries

Memory Allocation Example

= Read-only

char big_array[11<<24]; /* 16 MB */
char huge_array[1I<<31]; /* 2 GB */

int global = 0;
int useless() { return 0; }
int main ()

void *phugel, *psmall2, *phuge3, *psmalld;

int local = 0;

phugel = malloc(lL << 28);

psmall2 = malloc(lL << 8); /* 256 B */

phuge3 = malloc(IL << 32); /* 4 GB */

psmalld = malloc(lL << 8); /* 256 B */
/* Some print statements ... */

/* 256 MB */

}

Where does everything go?

volatile memories

SRAM

RAM - building block

Sha

Libraries

red x86-64 Example Addresses

Stack.

address range ~2%7

l local

0x00007££fedd3be8Tc
phugel

phuge3
psmalld

0x00007£7262a1€020 —__ |

0x00007£7162a1d010 |
0x000000008359d120 LeED

not drawn to scale

Shared
Libraries

Stack

psmall2
big_array
huge_array

0x0000000080601060
0x0000000000601060

main ()

useless () 0x0000000000400590

Heap

(Exact values can vary)

Data

Text

DRAM

6 transistors / bit

g 2
t
\ Heap

Text (code)

000000

lose information if powered off

Holds state indefinitely (but will still lose

data on power loss)
faster, more expensive

used as cache memories

1 Transistor + 1 capacitor / bit

Must refresh state periodically

used as main memories, frame buffers

conventional organization

Example Memory

10:
RS\ ' chu registrs hold words etrieved
1. // cache \[om et

(SRAM)
L2 cache
(SRAM)

U cache!
from the L2 cache.

retrieved from 3 cache.
13 cache
(SRAM)

retrieved from main memory.

Main memory
(DRAM)

retrieved from loca disks

Local secondary storage

(local disks)
Local disks hold fles

on remote servers
Remote secondary storage
(e.8., Web servers)

Hierarchy
and
costlier
(per byte)
o
13:

(per byte)
devices

L6:

memory hierarchy idea
e.g.
CPU chip

read/write memory

buffer overflow

toffrom CPU)

d *w DRAM

w - w bits per supercell

having an extra row buffer

Top - smaller space, speed faster, cost more,
storing data that is more frequently

accessed;

Bottom - larger space, speed slower, cost less;

Intel Core i7 Cache Hierarchy

read

Register file
System bus Memory bus

L .7 1
| e

Main
memory

write

write overflow, "changing the direction of

the stack pointer"

code level

Processor package
Core 0

Core3

L3 unified cache
(shared by all cores)
I

Main memory

Blocl

CPU place address on Bus

16 8 DRAM chip (toy example)

Memory
controller

supercell
R @1

d = row * col - have d supercells

L1 i-cache and d-cache:

32K8, 8-way,
Access: 4 cycles

L2 unified cache:

256 KB, 8-way,
Access: 10 cycles

L3 unified cache:

8 MB, 16-way,
Access: 40-75 cycles

Kk size: 64 bytes for

all caches.

Memory reads address from Bus, retrieve
data from that address, put the data on Bus

CPU read data from Bus, put it in

corresponding register

CPU place address on Bus

Memory reads address from Bus, waiting for
the data needed to be written

CPU place data on Bus

Memory reads data from Bus and store it at

corresponding address

use library routines that limit string lengths

= fgets instead of gets

= strncpy instead of strcpy

= Use fgets to read the string

= Don’t use scanf with %s conversion

Access Needs
time

Trans.
per bit

SRAM 6or8 1x No

DRAM 1 10x Yes

refresh? EDC?

Needs

Cost Applications
Maybe 100x Cache memories
Yes 1x Main memories,
frame buffers

EDC: Error detection and correction

jki/kji (2.0)

13k /jik (1.25)

kij/ikj (0.5)

450 500 550 600 650 700

n*n double array
array blocking size =L * L
cache block size = 8 double

cache could afford storing more than 2
array block

so when iterating each pair of array block, it
need at most 2 * LA2 / cache block size
misses to store all the elements in this pair
of array block in the cache

and we need n/L iteration

so the overall misses is (n/L) * (2 * LA2/8) =
nL/4, which is far more smaller than the cost
of normal case

Prerequisites elements in same position in different
q arrays will be stored in the same set in cache

for example, when we are handling c[x][x] =

a[1][x] * b[x][1],

first considering c[0][0] = a[1][0] * b[0][1],
we put b[0] into set 0, a[1] into set 1,

then considering c[1][1] = a[1][1] * b[1][1],
we first access a[1], then we evict a[1] and
put b[1] into set 1,

attention that in the following operations,
the a[1] is required again, so we need to
evict b[1] and put back a[1], here comes the
extra cost,

so what we can do is to delay the
assignment of the diagnal situation, by how
we could cut the cost

specification . . .
P = Or use %ns where n is a suitable integer
lessons
randomized stack offsets
system level
nonexecutable code segments stack marked as non-executable hard for adversary to insert binary code
. " before return position, to check if there is
using "stack canary" to protect buffer . . o
anything wrong (like overflow modification)
Programs tend to use data and instructions
principle with addresses near or equal to those they
have used recently
Recently referenced items are likely to be
referenced again in the near future
Temporal locality
same address
locality types
Items with nearby addresses tend to be
referenced close together in time
Spatial locality
nearby address
importance
/
// ziz-unesperm
l/ [l - -
/ [I Jooee |
I[s=2sets{ [Il Jeooof]
,I [I 201]
/ Cache size
I El L] o] =S x E x B data bytes
/
] valid bit B = 2° bytes per cache block (the data)
,' cache organization (S, E, B)
H [oo[ER]onnE=m)
— ——
II valid bit dirty bit B=2bbytes
II
! extension introduce a "dirty" bit in block to increase efficiency
/
/ : o
1 only write back when the the cache line is
,’ going to be replaced
)
)
' Address of word:
properties I caching cache accessing address
' tag set block
1 index offset
I
' 3 4 T n "3 S n n
I accessing process first find "set" in cache, then find "target
1
] hit block find in cache with corresponding set the 'target' means the block position in main
,’ and same target memory
I
I
I occur because cache starts empty
" accessing state compulsory (cold) miss
I first reference to the block
I
’ . .
I miss capacity miss when the set of active cache blocks is larger o
,' pacity than the cache ’
I
I
I . . the n-th reference to the block (n>1), and the
| conflict miss . .
) block is not in the cache
I
,' Fraction of memory accesses not found in
1 cache (misses / accesses) = 1 - hit rate
I
| Miss Rate
Il 3-10% for L1
| Typical numbers (as %)
l' can be quite small (e.g., < 1%) for L2,
'| depending on size, etc.
!
I Time to deliver a cached block to the includes time to determine
ll processor whether line is in cache
ll performance metrics Hit Time
| 4 clock cycle for L1
: Typical numbers
I 10 clock cycles for L2
|
I o . . .
I Additional time required because of a miss
| .
| Miss Penalty
: typically 50-200 cycles for main memory (
I Trend: increasing)
|
: Memory Mountain Test Function
I long data[MAXELEMS]; /* Global array to traverse */
. B P
I gy ooy st
: Jong acc0=10, accll= 0, ascz =]0) asc3|=10; For each elems and
long length = elems, limit = length - sxd; stride:
: origin ST e Lo
I SR 2.Call bost() againand
ace3 = acc3 + data[i+sx3]; measure the read
1 } - - throughput(MB/s)
: ST
I :e!:uzn ((ace0 + accl) + (acc2 + ace3));
1 } mountain/mountain.c
|
I Core i7 Haswell
: The Memory Mountain 2AGHE b
1 J— SMBL3cache
wrefetching 648 block size
| P 1500\
I g 14000
!
|| g 8000 Ridqes
I i 7 iy
1
1 :;‘:;‘:ﬁa!
| locality o
l Stride (B bytes) 59 » om " Size (bytes)
1 definition
1
1 Closer Look at Stride Effects
|
| .
| Throughput for size = 128K
| 30000
| Miss rate = stride/8
‘ 25000
|| é 0 Miss rate = 1.0 —=Measured
‘ 10000
|‘ 5000 8 elems per
0 cache block
‘ s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 sl1 s12
\ 3
|
\ Matrix Multiplication (ijk)
\
\ 7¥ i3k */ Inner loop:
1 es au0; dens 344 y
v ;:: -(k:;)?;km7 k) g["') Dﬁ
X sum +=-.m Bkl * B (31 A 8 c
memory moutain e [
) matmult/ma.c | Row-wise Column- Fixed
Miss rate for inner loop iterations: "
A B c
0.25 1.0 0.0
Block size = 32B (four doubles)
Matrix Multiplication (jik)
7% 35k %7 Inner loop:
for (3=0; j<n; j++) {
for (i=0; i<n; i++) {)
;:: Tk:t;‘:;km; kt+) g(i,') t]ﬁ
?um.4=_a:‘i‘:l[k] * blk][3]; A B c
, elil3] = [[]
) matmult/mm.c Row-wise Column- Fixed
Misses per inner loop iteration: "
A B C
0.25 1.0 0.0
Same analysis as ijk Block size = 32B (four doubles)
Rearranging loops to improve spatial locality e.g. matrix multiplication
Matrix Multiplication (kij)
753 %7 Inner loop:
for (k=0; k<n; k++) {
S o S P
for (3=0; j<n; j++) A B C
c[i][3] += r * b[k][3];
} ' matmult/mm.c Fixed Row-wise Row-wise
Miss rate for inner loop iterations:
A B C
0.0 0.25 0.25
Block size = 32B (four doubles)
Core i7 Matrix Multiply Performance
=
. o b
performance virtualization ., I
_/-t—
1 Cache Miss Analysis
o esson = Assume:
* Matrix elements are doubles
* Cache line = 8 doubles
= Cache size C << n (much smaller than n)
normal = Second iteration: — ! ~
: :/g;ir:n=9n/8 misses = X l
= Total misses: o
= 9n/8n?=(9/8) n®
Cache Miss Analysis
= Assume:
= Cache line = 8 doubles. Blocking size L>8
* Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 312< C
" o - n/Lblocks
blocking " :m(:es:r:mtué " EEEEE ®
= Blocks per Iteration: 2n/L - X =
(omitting matrix) ?
= Misses per Iteration:
Using blocking to improve temporal locality e.g. matrix multiplication v N
. ﬁf:::";:::].n cache - XE
further optimization avoid disposal eviction
Virtual Memory
magnetic medium
Read/write heads
from cinderto
cylinder
platters, each with 2 surfaces
component each surface consists of concentric rings - tracks "“~\\
each track consists of sectors separated by gaps
Disk Access — Service Time Components
i
N\
N
After BLUE read Seek for RED Rotational latency After RED read
Data transfer Seek Rotational Data transfer
latency
Time to position heads over cylinder
containing target sector.
seek time (T avg seek) a "fixed" number
" Taccess = Tavg seek + Tavg rotation + Tavg transfer
= Typical T, e is 3—9 Ms
disk access time
Disk Time waiting for first bit of target sector to

service time

read disk 1

Nonvolatile Memories

Disk Access Time Example

= Given:
* Rotational rate = 7,200 RPM
= Average seek time =9 ms
= Avg # sectors/track = 400

u Derived:

* Tavgrotation = 1/2 X (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

rotational latency (T avg rotation) " T.ugrotation

transfer time (T avg transfer)

e 'g' * Tavgtranster = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms
® Taccess =9 Ms+4ms+0.02ms
= Important points:
= Access time dominated by seek time and rotational latency.
= First bit in a sector is the most expensive, the rest are free.
= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower than DRAM.
1/0 Bus
CPU chip
Register file
System bus MemnIv bus
e O E
1/obus Expansion slots for
other devices such
uss. | Graphics. Disk as network adapters.
controller adapter controller
Mouse Keyboard Monitor.

pass under r/w head.

=1/2 x 1/RPMs x 60 sec/1 min

= Typical rotational rate = 7,200 RPMs

per min

Time to read the bits in the target sector.

=T =1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

avg transfer ~

time for one rotation (in minutes) fraction of a rotation to be read

CPU initiates a disk read by writing a command, logical block number, and destination memory

address to a port (address) associated with disk controller.

Disk controller reads the sector and performs a direct memory access (DMA) transfer into main memory.

When the DMA transfer completes, the disk controller notifies the CPU with an interrupt (i.e.,

retain information when powered off

types

uses

accessing speed of different devices

Read-only memory (ROM)

Electrically eraseable PROM (EEPROM)

asserts a special “interrupt” pin on the CPU).

programmed during production

electronic erase capability

: EEPROMs, with partial (block-level) erase capability

Flash memory

Wears out after about 100,000 erasings

3D XPoint (Intel Optane) & emerging NVMs

New materials

= Firmware programs stored in a ROM (BIOS,
controllers for disks, network cards, graphics
accelerators, security subsystem:s,...)

= Solid state disks (replacing rotating disks)

= Disk caches

100,000,000.0
10,000,000.0
1,000,0000
100,000.0
10,000.0

1,000.0

Time (ns)

100.0

w

SSD

s

DRAM

CPU

1985 1990 1995 2000 2003 2005 2010 2015

Year

o Disk seek time
—+-SSD access time

~0-CPU cycle time

=~ DRAM access time
~e-SRAM access time

—~o-Effective CPU cycle time

advantage

disadvantage

application

Effective CPU cycle time:
accounts for parallelism
within CPU (e.g., multiple

cores per CPU)

No moving parts — faster, less power, more rugged

Have the potential to wear out

In 2022, about 2 times more expensive per byte

Smartphones, laptops

Increasingly common in desktops and servers

