
 Authentication

 Methods

 Design

 Authentication trust

 Pairwise

 Third-party protocol

 messages exchanged all in two clients

 assumption

 types

 Clients A and B have already establish key
 sharing

 1-way

 2-way

 vulnerability reflection attack

 adversary start a new session with sender,
 repeating the message received

 causing message direction missing, not
 synchronized in both sides

 how?

 why?

 protocols

 using AS - authentication server for stroing long-term keys

 saving key exchanges

 NS78

 DS Replay Detection Protocol

 OR87

 Kerberos

 1-way auth

 2-way auth

 vulnerability

 should use nonces to avoid old key replay;

 should determine destination or it will be
 masquerade by adversary;

 message 3 repeatedly replay by A to B

 assume adversary knows Kab

 A knows the plaintext-ciphertext pair, could
 make off-line guessing

 should pad a confounder, which is random

 repeatedly replay message 3, make guessing
 about Kb

 add timestamp to NS78 to counter replay

 set valid interval

 vulnerability

 tickets for connecting another server cant
 be reused

 sensitive to network delay and out-of-sync
 clock

 more efficient

 but servers could not know if the other
 knows the Key ...

 v4

 v5

 introduces TGS - Ticket Granting Server

 replay detection

 credential cache

 network-layer addresses (ticket user's) in
 tickets

 KDC replication

 cross-realm (aka non-hierarchical)
 authentication

 other vulnerability

 substituting a K_{server-tgs} for long-term
 key K_server

 in order to decrease expose of the time long-
 term key

 enable ticket reuse for TGS and application

 sliding window 2nd chance

 adversary could steal the T and start the
 replay before the 2nd chance

 countermeasure?
 maybe assert ip verification in the plaintext
 needed to be encrypted

 containing session keys with version and
 tickets

 key version number
 for accepting tickets encrypted by old keys

 maintain the version number of key having number/time limit

 avoid ticket stolen reuse by adversary

 avoid single point failure and performance
 bottleneck

 have master KDC and slave KDCs (replicas)

 but non-transitive

 limitation

 avoid impersonation of being a third-side
 local

 O(n^2) maintaining all shared keys between
 every 2 domains in n domains

 no pre-authentication
 adversary could claim as A to start a
 conversation with AS, AS will not examine it
 and will directly generate a response.

 delegation of access

 ticket revocation via lifetime control

 inter-realm (aka hierarchical) authentication

 pre-authentication

 double TGT, client-to-client authentication

 forwardable TGT

 proxyable TGT

 used to request TGT with diff address

 optional transitive

 time limited

 used to request ticket with diff address

 no transitive

 time limited

 motivation

 concern

 solution

 if compromise is detected, need to revocate
 the tickets distributed

 some tickets might be long-lived and could
 not make revocation to them before their
 expiration

 in this mode, the ticket will generally have a
 short lifetime, but it will constantly be
 renewed if it is not in a revocation list

 client should travers a trust path to obtains
 TGTs (finally he gets the target TGT)

 motivation

 solution

 other promotions

 if a client send AS_REQ, the AS will directly
 reply AS_REP, containing plaintext-
 ciphertext pair. in this case, an adversary
 could send multiple AS_REQ to get many
 plaintext-ciphertext as he wants. then he
 could do the off-line guessing by decrypt the
 ciphertext by various guessed passwords (
 converted to keys) until they find the
 decryption match the plaintext.

 PADATA

 client need to take the timestamp encrypted
 with the key as part of the request

 AS should check the decrypted result of the
 timestamp with the timestamp provided in
 the block

 https://learn.microsoft.com/en-us/openspecs/
 windows_protocols/ms-kile/ae60c948-fda8-
 45c2-b1d1-a71b484dd1f7

 separation of entities type (human/server)

 separation of different domains

 avoid human user from obtaining the
 plaintext-ciphertext pairs

 using a flag set

 client A and B both obtain tickets (TGT) to
 TGS from AS (independent process)

 B send the his TGT to A

 A send A's ans B's TGT to TGS

 TGS generate the session key Kab back,
 passing to A and B in different encryption
 key

 * only achieve first order beliefs

 logic BAN

 to verify if an authentication protocol could
 work

 components

 sample

 personal summary for deduction

 assumptions

 statements

 axioms

 NS78 see LogicBAN ppt p10-14

 define 2 clients as A and B, and a server AS,

 usually, first belief of A side will be achieved
 by message containing a key Kab and a
 nonce encrypted by Ka-as through:
 verification of message meaning (A believes
 AS said X) ,
 freshness rule (A believes #(X)),
 nonce verification (A believes AS believes X),
 belief extension (A believes AS believes Kab,
 A believes AS believes #(Kab)),
 jurisdiction (A believes Kab, A believes #(
 Kab));

 first belief of B side will be achieved by part
 of the message containing a key Kab and a
 nonce encrypted by Kb-bs as above (B
 believes Kab), the second belief of B side will
 be achieved simultaneously by the other
 part of the message containing a nonce
 encrypted by Kab (B believes A believes Kab)

 the three axioms allow only the “up to the
 nearest peer link – across the peer link – and
 down” policy

 personal summary

 according to A1
 for AS1 > A,
 AS2, AS3, B (anyone else) could get
 authentication from AS1 about A

 according to A2
 for AS1 > A,
 A could trust AS2 (anyone AS1 trust)

 the axiom A3 is usually applied when W has
 a peer link with Z

