
 18730 - Intro to
 Computer Security

 Authentication

 Methods

 Pairwise

 messages exchanged all in two clients

 assumption
 Clients A and B have already establish key
 sharing

 types

 1-way

 vulnerability reflection attack

 adversary start a new session with sender,
 repeating the message received

 causing message direction missing, not
 synchronized in both sides

 2-way

 Third-party protocol

 how? using AS - authentication server for stroing long-term keys

 why? saving key exchanges

 protocols

 NS78

 1-way auth

 should use nonces to avoid old key replay;

 should determine destination or it will be
 masquerade by adversary;

 2-way auth

 vulnerability

 message 3 repeatedly replay by A to B

 A knows the plaintext-ciphertext pair, could
 make off-line guessing

 should pad a confounder, which is random

 assume adversary knows Kab
 repeatedly replay message 3, make guessing
 about Kb

 DS Replay Detection Protocol

 add timestamp to NS78 to counter replay

 set valid interval

 vulnerability

 tickets for connecting another server cant
 be reused

 sensitive to network delay and out-of-sync
 clock

 OR87

 more efficient

 but servers could not know if the other
 knows the Key ...

 Kerberos

 v4

 introduces TGS - Ticket Granting Server

 substituting a K_{server-tgs} for long-term
 key K_server

 in order to decrease expose of the time long-
 term key

 enable ticket reuse for TGS and application

 replay detection sliding window 2nd chance

 adversary could steal the T and start the
 replay before the 2nd chance

 countermeasure?
 maybe assert ip verification in the plaintext
 needed to be encrypted

 credential cache
 containing session keys with version and
 tickets

 key version number
 for accepting tickets encrypted by old keys

 maintain the version number of key having number/time limit

 network-layer addresses (ticket user's) in
 tickets

 avoid ticket stolen reuse by adversary

 KDC replication

 avoid single point failure and performance
 bottleneck

 have master KDC and slave KDCs (replicas)

 cross-realm (aka non-hierarchical)
 authentication

 but non-transitive
 avoid impersonation of being a third-side
 local

 limitation
 O(n^2) maintaining all shared keys between
 every 2 domains in n domains

 other vulnerability no pre-authentication
 adversary could claim as A to start a
 conversation with AS, AS will not examine it
 and will directly generate a response.

 v5

 delegation of access

 forwardable TGT

 used to request TGT with diff address

 optional transitive

 time limited

 proxyable TGT

 used to request ticket with diff address

 no transitive

 time limited

 ticket revocation via lifetime control

 motivation
 if compromise is detected, need to revocate
 the tickets distributed

 concern
 some tickets might be long-lived and could
 not make revocation to them before their
 expiration

 solution
 in this mode, the ticket will generally have a
 short lifetime, but it will constantly be
 renewed if it is not in a revocation list

 inter-realm (aka hierarchical) authentication
 client should travers a trust path to obtains
 TGTs (finally he gets the target TGT)

 pre-authentication

 motivation

 if a client send AS_REQ, the AS will directly
 reply AS_REP, containing plaintext-
 ciphertext pair. in this case, an adversary
 could send multiple AS_REQ to get many
 plaintext-ciphertext as he wants. then he
 could do the off-line guessing by decrypt the
 ciphertext by various guessed passwords (
 converted to keys) until they find the
 decryption match the plaintext.

 solution PADATA

 client need to take the timestamp encrypted
 with the key as part of the request

 AS should check the decrypted result of the
 timestamp with the timestamp provided in
 the block

 https://learn.microsoft.com/en-us/openspecs/
 windows_protocols/ms-kile/ae60c948-fda8-
 45c2-b1d1-a71b484dd1f7

 other promotions

 separation of entities type (human/server)

 avoid human user from obtaining the
 plaintext-ciphertext pairs

 using a flag set

 separation of different domains

 double TGT, client-to-client authentication

 client A and B both obtain tickets (TGT) to
 TGS from AS (independent process)

 B send the his TGT to A

 A send A's ans B's TGT to TGS

 TGS generate the session key Kab back,
 passing to A and B in different encryption
 key

 * only achieve first order beliefs

 Design logic BAN

 to verify if an authentication protocol could
 work

 components

 assumptions

 statements

 axioms

 sample NS78 see LogicBAN ppt p10-14

 personal summary for deduction

 define 2 clients as A and B, and a server AS,

 usually, first belief of A side will be achieved
 by message containing a key Kab and a
 nonce encrypted by Ka-as through:
 verification of message meaning (A believes
 AS said X) ,
 freshness rule (A believes #(X)),
 nonce verification (A believes AS believes X),
 belief extension (A believes AS believes Kab,
 A believes AS believes #(Kab)),
 jurisdiction (A believes Kab, A believes #(
 Kab));

 first belief of B side will be achieved by part
 of the message containing a key Kab and a
 nonce encrypted by Kb-bs as above (B
 believes Kab), the second belief of B side will
 be achieved simultaneously by the other
 part of the message containing a nonce
 encrypted by Kab (B believes A believes Kab)

 Authentication trust

 personal summary

 according to A1
 for AS1 > A,
 AS2, AS3, B (anyone else) could get
 authentication from AS1 about A

 according to A2
 for AS1 > A,
 A could trust AS2 (anyone AS1 trust)

 the axiom A3 is usually applied when W has
 a peer link with Z

 the three axioms allow only the “up to the
 nearest peer link – across the peer link – and
 down” policy

 Cryptography

 Encryption

 ECB

 block by block encryption Chosen Plaintext Attack
 don't need to match the entire message,
 could guess part of the message

 should introduce probabilistic
 necessary for a secure encryption method
 but not sufficient

 Symmetric Encryption Modes

 block cipher

 an encryption algorithm

 if we input same input, we get same output

 encryption functions are public

 use a secret key to choose an encryption
 function to encrypt

 Chaining modes

 CBC

 XORed with previous encryption block (for
 the first block, XOR with an IV instead)

 IV need to be random

 derivative

 CBC-Chain

 random initial IV in message 1

 initial IV's influence will propagate to the
 every following message encryption

 CBCC - stateful CBC

 state initialization

 CBC$ in kerberos v5

 confounder is a random generated full block

 cksum 校验和

 IV is random for every message

 PCBC

 attack swapping ciphertext blocks

 IGE

 attack
 swapping ciphertext blocks after specific
 CPA

 not secure, attack

 modify one plaintext bit will leave other
 bits' encryption result unchanged

 need the PCBC

 CPA, e.g. if x2 chosen to be y1, then the y2
 will always be 0, if the noise of the next
 block encryption is fixed, adversary could
 exploit this

 it could be applied to all CBC derivative
 modes that only use previous y as XOR noise

 counter modes

 CTR

 because the X_n does not participated in the
 encryption part, there is no need for
 padding in CTR

 keep referring to the initial ctr as it keeps
 incrementing it in further encryption

 CTR$
 ctr is randomly selected for every block of
 any message

 Message Authentication Code (MAC) Modes

 CBC MAC

 for checking data integrity

 1

 IV = 0, have padding in plaintext

 secure for fixed-length messages

 insecure for variable length
 adversary could generate a M’ (m1’, m2’, … ,
 mn’) whose XOR result equals cbc_mac, so it
 would not be discovered

 2

 or designing based on PCBC, IGE ... (ppt say
 CTR is not very useful)

 Authenticated Encryption Modes

 Encryption with Authenticity (and Integrity)

 authenticity - determine origin of a message

 integrity - Detect all message modifications (
 e.g., forgeries) with very high probability

 requirements

 for secrecy, authenticity, and integrity

 need 2 pass over data (Encrypt + MAC), 1-2
 crypto primitives

 for efficiency, 1 pass over data, 1 crypto
 primitive is ok

 protect against existential forgeries in CPA;
 or obtain ciphertext unforgeability

 types

 2-pass

 Encrypt & Authenticate (AuE)

 plaintext are used for encryption mode and
 MAC mode (the two modes using different
 key encryption), then concatenates together

 mostly not secure for all secure Enc and
 MAC modes

 e.g.

 1 bit changes in plaintext will not lead to
 other bits changed in ciphertext;

 if the calculation of CBC-MAC equals XOR all
 the plaintext,

 in this case, if we changes 1 bit in C', the CBC-
 MAC result is same as CBC-MAC(P2)

 Authenticate then Encrypt

 plaintext are used to generate a MAC, then
 the concatenate of them will be encrypted
 again by another key encryption

 example

 not secure for all secure Enc and MAC modes

 secure for some
 SSL

 Kerberos v5 (hash)

 Encrypt then Authenticate

 generate ciphertext by plaintext first, then
 use the ciphertext to generate a MAC (
 different key encryption) and concatenate
 the ciphertext and MAC together

 example

 secure for all secure Enc and MAC modes

 1-pass

 designing approach

 1. Partition Message into Blocks - use
 padding if necessary;

 2. Compute Redundancy Block - use
 Manipulation Detection Code (MDC);

 3. Add redundancy block to message blocks;

 4. Encrypt message and redundancy block;

 CBC-XOR (failed) problems

 Truncation with CPA

 Swapping

 Insertion of double same blocks

 CTRC-XOR (failed)
 non-crypto Modification Detection Codes (
 MDCs) will not detect such attacks

 XCBC-XOR

 AuE type

 1 pass and 1 crypto primitive

 weak or strong MAC definition

 Parallel Encryption Mode Randomizing Plaintext

 Hash

 mapping an arbitrary-length string to a
 fixed-length string

 advantage
 efficient polynomial time to length of input

 public not using key

 properties

 pre-image resistance is like have no idea of
 the origin password

 for **every** m, there is no a m' such that h(
 m) = h(m')

 given a m, can't find a m' such that h(m) = h(
 m')

 relationships

 applications

 password storage need P1

 manipulation detection codes need P3

 hash trees need P2

 digital signatures need P3

 commitment protocols
 e.g. a bid in an auction

 need P1, P2, P5

 key derivation need P4

 seeding Pseudo-random Number Generator (
 PRNG)

 need P6

 ...

 vulnerability collision finding attack

 birthday paradox

 ...

 designing hash functions

 Generating large number variants of a
 message

 larger than 2^128, suggested for hash
 function output

 generating 2^32 variants is currently feasible

 generating 2^64 is not feasible now

 hash based on block ciphers

 concerns

 1) CBC bit flip

 2) PCBC swap

 3) IGE swap after CPA

 4) secure
 5) secure

 encryption function is chosen by
 undetermined element, and added some
 noise

 having P1, P2, P4, P6

 block ciphers are usually too small to act as
 a hash function

 Compression Functions

 Merkle-Damgard Scheme

 padding is necessary for this scheme to
 preserve collision resistance

 for personal note

 for vulnerability, attack

 or the length might be shorter

