Math =

~— \ector v written as v or 7.

— Defi A vector from (0,0, ..., 0) pointing to (v_1,v_2, ..., v_n) is written as ¥ := (v1, va, ..., VUy).

“— For measuring direction and magnitude

For all vectors u, v, w and scalars a, b:

ut+v=v+u

ut(v+w)=(ut+v)+w

There exists a zero vector “0” suchthatv+0=0+v=v . )
For every v there is a vector “—v” such that v+ (—v) = 0  Basic Operations
lv=v

a(bv) = (ab)v

a(u+v) =au+av

(a+b)v=av+bv

\

~— Vector —

(w,v) := Yl uiv;.

N Inner Product e (u,v) = (v,u)
’ — ’

properties ® (u,u) > 0, with equality only foru = 0
* (au+bv,w) =a(u,w)+b(v,w)
~ull = v/ (u,w).
~ Norm — * ||u|| > 0, with equality only foru =0
* ||lu|| =0ifand only ifu = 0

\— properties ——
* [laul| = [a][|u]]

o [[ut vl <luf| +]v]|

A map f between vector spaces is linear if
— Linear Map — fx+y) = f)+ f(y)
and

flax) = af(x),
if we have some set of weights w1, ..., wy such that }' ; w; = 1, then a map f is affine if

— Affine Map — flwixg + -+ wnxy) = ;wif(xi)

for any collection of vectors xy, ..., Xy.

The span of a collection of vectors ey, . .., e, is the set of all vectors u that can be expressed as

n
u=uje;+ - +use, =y ue
i=1

~ Linear Algebra — . .
for some set of coefficients uj, ..., un € R. If the vectors e, .. ., e, span all the vectors in R", we say that the

collection {e;} is a basis for R". If, in addition, (e;, e;) = 1for all, and (e;, e;) = 0 fori # j, we say that {e;}
is an orthonormal basis. Notice, by the way, that this definition depends on our choice of inner product (-, -).

1. normalize the first vector (i.e., divide by its length)

N Basis and Span —
2. subtract any component of the 1st vector from the 2nd one

subtracting off any part of the previous vector is not orthogonal to the new vectors; only keeping the orthogonal part.

3. normalize the 2nd one

4. repeat, removing components of first k vectors from vector k+1

Gram-Schmidt
procedure uz

A e;:=u;/|u
uz :
u; 1 U:=up;—(uz,e)e
M

Up = Up— < Up,€1 > 61— < Up,€a >€2—...— < Up,Up_1 > €51,

“— How to get Orthonormal Basis ——

where u,, stands for the n-th orthonormal basis.

Given some set of variables x1, ..., X € R, a (real) linear equation is any equation of the form

f(xl,...,Xk) =b

where f is a linear function and b € R is a constant.

A system of linear equations is simply a collection of linear equations

\— Systems of Linear Equations —— Al ) b
1\X1,.--, %) = 01

fo(x1,...,x) = by,

each of which shares the same set of variables. Solving a linear system means finding values for the variables
x1,..., X that satisfy all of the equations simultaneously. We will also sometimes refer to these variables as
degrees of freedom.

*Especially in computer graphics, matrices
“— Matrices — almost always have a very concrete — e.g., arotation, a re-scaling, an energy, etc.
geometric meaning

In our study of linear algebra, we talked about inner products abstractly, i.e., we said that an inner product (-, -)
was any operation that is symmetric, bilinear, etc. When working with two- and three-dimensional geometry,
we typically want to work with one very special inner product called the Euclidean inner product, which
has a concrete geometric relationship to lengths and angles. In particular, for any two vectors u, v € R", the
Euclidean inner product is defined as

(0, V)Buc = [u][v] cos(6).

where |u| and |v| are the lengths of u and v, respectively, and § > 0 is the (unsigned) angle between them. If
the components u;, v; of these two vectors are expressed with respect to some orthonormal basis ey, ..., e;,
then the Euclidean inner product can be computed via the dot product

n
~— Dot Product — u-v:i= Z uivj,
i=1

Notice that we made two key assumptions here:

1. The vectors u, v represent vectors in IR”; they are not tangent vectors on the sphere, bitmap images, or
rows in a database.

2. The values u,...,u, and vy, ..., v, are the components of u and v with respect to an orthonormal basis.

If either of these two assumptions are violated, then the dot product no longer carries the geometric meaning
one might expect, i.e., it is no longer true that u-v = (u, v)gy.. If we want to recover length or angle
in a different basis, we need to carefully account for the effect of our choice of basis on the coordinates—
mismanagement of coordinate systems is common source of bugs in graphics code.

Unlike the dot product, which maps two vectors to a scalar, the cross product maps two vectors to another
vector. In particular, for two vectors u,v € R3, the cross product can be defined as the unique vector
u x v € R3 such that

= Vector Calculus — \/det(u, v,u x v) = |u||v|sin()

where det denotes the determinant of a matrix, and 6 € [0, 7t] is the angle between u and v. E] From these
three properties, one can infer that in an orthonormal coordinate system the cross product must be equal to

Up03 — U3V
uXxXv=| Uz — U103

— —_—
Cross Product U1Uy — UV

Note that this operation is only well-defined for vectors in R3. However, it is sometimes convenient
(especially in computer graphics) to abuse notation and write

uXVv:i=uUuivy—uyog

for a pair of vectors u, v € R2. This expression effectively treats u and v as 3-vectors (u1, up,0) and (v1,v5,0),
yielding the third (nonzero) component as the result. The dot and cross product are extremely important in
many computer graphics concepts, so we highly encourage you to spend some time thinking about their
geometric meaning.

“— Derivatives & Integration



